
International Journal of Scientific & Engineering Research Volume 4, Issue3, March-2013 1
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Deriving Personalized Concept and Fuzzy
Based User Profile from Search Engine

Queries
Abstract — Personalized search is an important research area that aims to resolve the ambiguity of query terms. Since queries
submitted to search engines tend to be short and ambiguous, they are not likely to be able to express the user’s precise needs. To
alleviate this problem, some search engines suggest terms that are semantically related to the submitted queries so that users can
choose from the suggestions the ones that reflect their information needs. First, we develop online techniques that extract concepts
from the web-snippets of the search result returned from a query and use the concepts to identify related queries for that query. A
new two phase personalized agglomerative clustering algorithm and fuzzy clustering algorithm, which is able to generate
personalized query clusters. Experimental results show that our approach has better precision and recall than the existing query
clustering methods. So we can find an effective method for search engines to provide query suggestions on semantically related
queries in order to help users formulate more effective queries to meet their diversified needs. All above analysis is done on the
basis of mathematical calculations.

Index Terms — Query log analysis, Clustering URL, Clustering queries, Clickthrough, Concept based clustering,
Personalization, Fuzzy clustering, Search engine.

—————————— ——————————

1. Introduction
Most commercial search engines return roughly
the same results for the same query, regardless
of the user’s real interest. Since queries
submitted to search engines tend to be short and
ambiguous, they are not likely to be able to
express the user’s precise needs. For example, a
farmer may use the query “apple” to find
information about growing delicious apples,
while graphic designers may use the same query
to find information about Apple Computer.
Personalized search is an important research
area that aims to resolve the ambiguity of query
terms. To increase the relevance of search
results, personalized search engines create user
profiles to capture the users’ personal
preferences and as such identify the actual goal
of the input query. Since users are usually
reluctant to explicitly provide their preferences
due to the extra manual effort involved, recent
research has focused on the automatic learning

of user preferences from users’ search histories
or browsed documents and the development of
personalized systems based on the learned user
preferences. A good user profiling strategy is an
essential and fundamental component in search
engine personalization
To improve user’s search experience, most major
commercial search engines provide query
suggestions to help users formulate more
effective queries. When a user submits a query,
a list of terms that are semantically related to the
submitted query is provided to help the user
identify terms that he/she really wants, hence
improving the retrieval effectiveness. Yahoo’s
“Also Try” and Google’s “Searches related to”
features provide related queries for narrowing
search, while Ask Jeeves suggests both more
specific and more general queries to the user.
Unfortunately, these systems provide the same
suggestions to the same query without
considering users’ specific interests.
It propose a method that provides personalized
query suggestions based on a personalized
concept-based clustering technique. In contrast
to existing methods that provide the same
suggestions to all users, our approach uses click
through data to estimate user’s conceptual

————————————————
 Rahul Verma is currently pursuing masters degree program in Information

Technology engineering in M.I.T. Ujjain, R.G.P.V Universit., Bhopal,
India PH-9926621928. E-mail: rahulv.8617@gmail.com

 Prof. Kshitij Pathak has ben working as faculty in the Information
Technology,at MIT Ujjain (M.P.), E-mail: er.k.pathak @gmail.com

International Journal of Scientific & Engineering Research Volume 4, Issue3, March-2013 2
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

preferences and then provides personalized
query suggestions for each individual user
according to his/her conceptual needs. The
motivation of our research is that queries
submitted to a search engine may have multiple
meanings. For example, depending on the user,
the query “apple” may refer to a fruit, the
company Apple Computer or the name of a
person, and so forth. Thus, providing
personalized query suggestion (e.g., users
interested in “apple” as a fruit get suggestions
about fruit, while users interested in “apple” as
a company get suggestions about the company’s
products) certainly helps users formulate more
effective queries according to their needs. The
underlying idea of our proposed technique is
based on concepts and their relations extracted
from the submitted user queries, the web-
snippets,1 and the click through data. Click
through data was exploited in the personalized
clustering process to identify user preferences: A
user clicks on a search result mainly because the
web snippet contains a relevant topic that the
user is interested in. Moreover, clickthrough
data can be collected easily without imposing
extra burden on users, thus providing alow-cost
means to capture user’s interest.

 Figure 1: The general process of concept-based
clustering.

It approach consists of the following four major steps.
First, when a user submits a query, concepts (i.e.,
important terms or phrases in web-snippets) and their
relations are mined online from web-snippets to build
a concept relationship graph. Second, clickthroughs
are collected to predict user’s conceptual preferences.

Third, the concept relationship graph together with
the user’s conceptual preferences is used as input to a
concept-based clustering algorithm that finds
conceptually close queries. Finally, the most similar
queries are suggested to the user for search
refinement. Figure 1 shows the general process of our
approach. To evaluate the performance of our
approach, we developed a Google middleware for
clickthrough data collection.2 Users were invited to
test our middleware with test queries selected from a
spectrum of topical categories. We evaluate the
performance of our approach using the standard
recall-precision measures. Beeferman and Berger’s
agglomerative clustering algorithm (or simply called
BB’s algorithm in this paper) is used as the baseline to
compare with our concept-based approach. Our
experimental results show that the average precision
at any recall level is better than the baseline method.

2. RELATED WORK

Query clustering techniques have been developed in
diversified ways. The very first query clustering
technique comes from information retrieval studies.
Similarity between queries was measured based on
overlapping keywords or phrases in the queries. Each
query is represented as a keyword vector. Similarity
functions such as cosine similarity or Jaccard
similarity were used to measure the distance between
two queries. One major limitation of the approach is
that common keywords also exist in unrelated
queries. For example, the queries, “apple iPod” (an
MP3 player) and “apple pie” (a dessert), are very
similar since they both contain the keyword “apple.”
However, the queries are actually expressing two
different search needs.
Dik Lun Lee [2] proposed to user profiling is a
fundamental component of any personalization
applications. Most existing user profiling strategies
are based on objects that users are interested in (i.e.
positive preferences), but not the objects that users
dislike (i.e. negative preferences). It focuses on search
engine personalization and develops several concept-
based user profiling methods that are based on both
positive and negative preferences. We evaluate the
proposed methods against our previously proposed
personalized query clustering method.
Eric Brill and Susan Dumais [3] have proposed that
incorporating user behavior data can significantly
improve ordering of top results in real web search
setting. We examine alternatives for incorporating
feedback into the ranking process and explore the
contributions of user feedback compared to other
common web search features. A large scale evaluation

International Journal of Scientific & Engineering Research Volume 4, Issue3, March-2013 3
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

over 3,000 queries and 12 million user interactions
with a popular web search engine. We show that
incorporating implicit feedback can augment other
features, improving the accuracy of a competitive web
search ranking algorithms by as much as 31% relative
to the original performance.

Doug Beeferman and Adam Berger [5] has
proposed a technique for mining a collection of
user transactions with an Internet search engine
to discover clusters of similar queries an similar
URLs. The information we exploit is
“Clickthrough data”: each record consists of a
user’s query to a search engine along with the
URL which the user selected from among the
candidates offered by the search engine. By
viewing this dataset as a bipartite graph, with
the vertices on one side corresponding to
queries and the other side to URLs, one can
apply an agglomerative clustering algorithm to
the graph’s vertices to identify related queries
and URLs. One noteworthy feature of the
proposed algorithm is that it is “content-
ignorant” the algorithm makes no use of the
actual content of the queries or URLs, but only
how they co-occur within the clickthrough data.
It describes how to enlist the discovered clusters
to assist users in web search, and measure the
effectiveness of the discovered clusters in the
Lycos search engine.
We know that most of the previous approaches
on query clustering consider two different
queries to be semantically similar if they lead to
common clicks on the same pages. However, the
chances for different queries leading to common
clicks on the same URLs are rare in Web search
engines. Based on this important observation,
we propose to use concepts, not pages, as the
common ground for relating semantically
similar queries. That is, two queries are
considered related if they lead to clicks on pages
that share some common concepts, which are
mined from the web-snippets in the search
results.
To our knowledge, there is no previous study on
the personalization of query suggestions. We
propose a two-phase clustering method to
cluster queries first within the scope of each user

and then for the community. We conduct
experiments to evaluate different methods and
show that our concept-based two-phase
clustering method yields the best precision and
recall.

3. QUERY LOG ANALYSIS
Because of the proprietary nature of the
information, the scientific literature contains
very little analysis of data collected from large-
scale commercial search engines. An exception is
Silverstein et. al, who reported statistics
accumulated from a billion entry set of user
queries to Altavista.
One of the central aims of the present work was
to develop a rapid turnaround clustering
module capable of identifying and adapting too
late-breaking or ephemeral trends in web usage.
It involved a query log accumulated over six
weeks; we are more interested in discovering
information from a single day’s records. After
having processed the day’s queries, a clustered
could provide “fresh” clusters for deployment in
the search engine the following day. This is
critical for rapid response to news events. Where
sprint and MCI/WorldCom are two unrelated
telecommunication companies one day, they
might announce a merger the very next day. As
soon as possible after the announced merger, a
search engine with a rapid –turnaround
clustering module could, in response to the
query Sprint, propose www.mci.com as a
possibly relevant URL, and suggest
MCI/WorldCom as a related query.

4. CLUSTERING URLS
A high quantity URL clustering algorithm could
help in automating the process of ontology
generation (the task which Yahoo and Open
Directory human employees perform),
organizing bookmark files into categories,
constructing a user specific profile of “pages this
person finds interesting” and grouping the
results of a web search by category. Not
surprisingly the past years have witnessed a
great deal of interest in this area.
Researchers have been investigating the more
general problem of document clustering

International Journal of Scientific & Engineering Research Volume 4, Issue3, March-2013 4
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

algorithms for decades, and it makes sense to
consider how well these approaches-which do
not exploit the correlations between documents
and queries inherent in a search engine
transaction database, would fare on a subset of
the internet. One popular technique is k-means,
whose running time is linear in the member of
documents lie in a spherical configuration with
respect to underlying metric. Also popular are
hierarchical agglomerative clustering (HAC)
techniques, typically at least quadratic in n,
which repeatedly find the closest two
documents and merge them.
Our approach falls into the HAC category, but
differs from traditional techniques in one
significant way. Namely, the distance between
two documents can be evaluated without
examining the content of those documents, a
property we shall refer to as “content
ignorance.” This stands in contrast to traditional
“content-aware” clustering algorithms, which
typically use as a distance between documents
some function of the fraction of tokens they have
in common.
Clustering web pages by content may require
storing and manipulating a staggeringly large
amount of data: by early 2000, there were atleast
a billion pages on the Internet accessible by
commercial search engines. Content ignorance
can obviously be a valuable property when
handling a dataset of this scale. It can also be
applicable, at least in principle, in setting where
content-aware clustering is not, including:

 Text-free pages: A distance function calculated
from the text of a web page isn’t capable of
recognizing the correspondence between a web
page containing just a picture of an emu and
another describing the appearance and behavior of
an emu.

 Pages with restricted-access: URLs may be
password protected or temporarily unavailable,
rendering them unavailable to a clustering
procedure which relies on the content of the page.

 Pages with dynamic content: A URL might always
point to a company’s web page, but the contents of
that page are likely to change regularly, updated
with news about the company. A content-aware

clustered is more susceptible to placing a URL in
different clusters as the page is modified.

The last and perhaps most important advantage is that
content-ignorant clustering can be implemented
relatively more efficiently than standard
agglomerative techniques.

5. CLUSTERING QUERIES
Clustering queries submitted to search engine
appears to be a rather less explored problem
than clustering web pages, through there are
practical, commercial applications for a high
quality query clustered. For instance, if a user
submits to a search engine a query q which is a
member of a cluster C, the search engine could
suggest as alternate, related queries the other
member of C. Such a “related query” tool is
deployed in the Lycos search engine; the
component appears in Figure 1.

Figure 2: Lycos Search Engine.

Many commercial search engines offer users the
opportunity to rephrase their information need
by suggesting alternate queries. Shown is the
top of a page generated by Lycos is response to
the query American Airlines. A query clustering
algorithm could provide such a list of
suggestions by offering, in response to a query
q, the other members of the cluster containing q.

International Journal of Scientific & Engineering Research Volume 4, Issue3, March-2013 5
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

6. CLICKTHROUGH DATA
The http protocol allows commercial search
engines the ability to record a great deal of
information about their users the name and IP
address of the machine which sent the request,
the type of web browser running on the
machine, and so on. Here we are interested only
in the sequence of character comprising the
query submitted by the user from among the
choices presented by the search engine. It
applied a simple filter to detect and remove
those records containing objectionable content
such as pornography and hate speech. This
eliminated about 20% of the records gathered,
including an undetermined number of false
positives and negatives. It mapped the query
characters to lowercase and converted a
sequence of one or more spaces to positive, but
otherwise performed no processing of the
queries submitted to Lycos.
It avoids significant processing of the search
engine log file to underscore the “pushbutton”
nature of the proposed clustering based
algorithms. Clearly, however, even a minimal
amount of preprocessing could go a long way in
helping the clustering.

7. CONCEPT BASED CLUSTERING

Using the concepts extracted from web-snippets,
we propose concept-based clustering methods.

We first extend BB’s algorithm to a concept-
based algorithm. After that personalized
concept-based algorithm is further enhanced to
achieve effective personalized clustering.

A. Clustering on Query-Concept Bipartite
Graph
In BB’s graph-based clustering, a query-page
bipartite graph is first constructed with one set
of the nodes corresponding to the set of
submitted queries, and the other corresponding
to the sets of clicked pages. If a user clicks on a
page, a link between the query and the page is
created on the bipartite graph. After obtaining
the bipartite graph, an agglomerative clustering

algorithm is used to discover similar queries and
similar pages. During the clustering process, the
algorithm iteratively combines the two most
similar queries into one query node, then the
two most similar pages into one page node, and
the process of alternative combination of queries
and pages is repeated until a termination
condition is satisfied. The main reason for not
clustering all the queries first and then all the
pages next are that two queries may seem
unrelated prior to page clustering because they
link to two different pages but they may become
similar to each other if the two pages have a
high enough similarity to each other and are
merged later.

B. Personalized Concept-Based Clustering
We now explain the essential idea of our
personalized concept-based clustering algorithm
with which ambiguous queries can be clustered
into different query clusters. Personalized effect
is achieved by manipulating the user concept
preference profiles in the clustering process. In
contrast to BB’s agglomerative clustering
algorithm, which represents the same queries
submitted from different users by one query
node, we need to consider the same queries
submitted by different users separately to
achieve personalization effect. In other words, if
two given queries, whether they are identical or
not, mean different things to two different users,
they should not be merged together because
they refer to two different sets of concepts for
the two users.
Therefore, we treat each individual query
submitted by each user as an individual vertex
in the bipartite graph by labeling each query
with a user identifier. Moreover, concepts
appearing in the web-snippet of the search
result with interestingness weights greater than
zero in the concept preference profile are linked
to the corresponding query on the bipartite
graph. An example is shown in Figure 3a. We
can see that the query “apple” submitted by
users User1 and User3 become two vertices
“apple()” and "apple() . "	 If User1 is
interested in the concept “apple store,” as
recorded in the concept preference profile, a link

International Journal of Scientific & Engineering Research Volume 4, Issue3, March-2013 6
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

between the concept “apple store” and the
query “apple()” would be created. On the
other hand, if User3 is interested in the concept
“fruit,” a link between the concept “fruit” and
“apple()” would be created.

Figure 3a: Original Bipartite Graph.

After the personalized bipartite graph is created,
our initial experiments revealed that if we apply
BB’s algorithm directly on the bipartite graph,
the query clusters generated will quickly merge
queries from different users together, thus
losing the personalization effect We found that
identical queries, though issued by different
users and having different meanings, tend to
have some generic concept nodes such as
“information” in common, e.g., “apple()”
and “apple()” both connect to the
“information” concept node in Figure 3a. Thus,
these query nodes will likely be merged in the
first few iterations and cause more queries from
different users to be merged together in
subsequent iterations. Considering Figure 3a
again, if “apple()” and “apple()” are
merged, the next iteration will merge the
concept nodes “apple store,” “fruit,” and
“information.” When the clustering algorithm
goes further, queries across users will be further
clustered together. At the end, the resulting
query clusters have no personalization effect at
all. To resolve the problem, we divide clustering
into two steps. In the initial clustering step, an
algorithm similar to BB’s algorithm is employed
to cluster all the queries, but it would not merge
identical queries from different users
.

Figure 3b: Initial Clustering.

After obtaining all the clusters from the initial
clustering step, the community merging step is
employed to merge query clusters containing
identical queries from different users. We can see
from Figure 3d that “apple()” and “apple()”
belong, correctly, to different clusters. The initial
clustering step is able to generate high precision rate
because it preserves the preference of each user, while
the community merging step is able to improve the
recall rate because of the collaborative filtering effect.

Figure 3c: Community merging

Initial clustering is similar to BB’s agglomerative
algorithm as already discuss. However, queries from
different users are not allowed to be merged in initial
clustering Figures 3b and 3c show examples of query
and concept merging, respectively. Figure 5d
illustrates the result of initial clustering. In
community merging, query clusters containing
identical queries from different users are compared
for merging. Figures 3d and 3e show an example of
query cluster merging.

International Journal of Scientific & Engineering Research Volume 4, Issue3, March-2013 7
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

The query clusters both contain the query “apple”
and are leading to the same concept “apple store.”
Therefore, they are merged in community merging as
one big cluster. Good timing to start community
merging is important for the success of the algorithm.
If we stop initial clustering too early (i.e., not all
clusters are well formed), community merging
merges all the identical queries from different users
first and thus generates a single big cluster without
much personalization effect. However, if we stop
initial clustering too late (i.e., clusters are being overly
merged in this case), the low precision rate generated
by initial clustering would not be improved by
community merging.

8. FUZZY CLUSTERING USING CONCEPTS
The first step in generating the concept-based fuzzy
clusters is to obtain a set of concepts associated with
the users queries. The source of the conceptual
information is a concept knowledge base that was
originally devised for query expansion. This concept
knowledge base contains relationships between
concepts and the terms have been used to describe
them. The ACM Computing Classification System
was used as the source of the conceptual knowledge
for the prototype tool, resulting in a concept
knowledge base specifically for the computer science
domain. The process for obtaining the concepts that
are related to the users queries is similar to the
process for generating the query space as described.
The query terms are first processed using Porter’s
stemming algorithm, which removes the prefixes and
suffixes from terms to generate the root words, called
stems. These stems are matched to the stems in the
concept knowledge base, and the nearest concepts are
selected. For each of these concepts, the set of stems
that are nearest to the concept are selected from the
knowledge base. Each of these sets will contain one or
more of the original query term stems, plus additional
stems that are not present in the query. The first step
in generating the concept-based fuzzy clusters is to
obtain a set of concepts associated with the users’
queries. The source of the conceptual information is a
concept knowledge base that was originally devised
for query. This concept knowledge base contains
relationships between concepts and the terms have
been used to describe them. The ACM Computing
Classification System was used as the source of the
conceptual knowledge for the prototype tool,
resulting in a concept knowledge base specifically for
the computer science domain. The process for

obtaining the concepts that are related to the users
queries is similar to the process for generating the
query space as described. The query terms are first
processed using Porter’s stemming algorithm, which
removes the prefixes and suffixes from terms to
generate the root words, called stems. These stems are
matched to the stems in the concept knowledge base,
and the nearest concepts are selected. For each of
these concepts, the set of stems that are nearest to the
concept are selected from the knowledge base. Each
of these sets will contain one or more of the original
query term stems, plus additional stems that are not
present in the query. Therefore, as a result of this
query space generation, a set of concept vectors C =
{푐 ,푐 , … , 푐 } are generated. If the total number of
unique stems that were selected from the concept
knowledge base is p, then the dimension of all vectors
푐 (i = 1 . . .m) is p. Further, the magnitude of the
vector 푐 (i = 1 . . .m) on dimension j (j = 1 . . . p) is
given by the concept knowledge base weight between
concept i and term j.
After the concepts have been obtained from the
concept knowledge base, and the concept vectors
have been created, the users’ queries are sent to the
Google API. As each of the document surrogates are
retrieved, a single-pass fuzzy c-means clustering
algorithm is performed. The title and snippet from the
document surrogate are processed using Porter’s
stemming algorithm, and the frequency of each
unique stem is calculated. These frequencies are used
to generate vectors for each of the document
surrogates. Although some argue against using term
frequencies (TF) as the sole source of information in a
text retrieval system, using other global information
such as the inverse document frequency (IDF) is not
feasible when the document surrogate vectors need to
be generated as each document surrogate is retrieved
(to achieve a near real-time web information retrieval
system). Given a set of concept vectors C =
{푐 ,푐 , … , 푐 } and a document surrogate vector푑 , the
fuzzy membership of document surrogate 푑 with
respect to concept 푐 is given by:

푢 , =
1

∑ 푠푖푚(푑 , 푐)
푠푖푚(푑 , 푐)

In this calculation, the similarity between a document
surrogate vector and a concept vector is given by the
Euclidean distance metric.

International Journal of Scientific & Engineering Research Volume 4, Issue3, March-2013 8
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

푠푖푚 푥 , 푥 = ((푥 , − 푥 ,)) ⁄

 ((1)
Normally, when evaluating the document surrogates,
all unique stems would contribute to the construction
of the document surrogate vector. However, since the
distance calculations in this single-pass fuzzy
clustering algorithm are always between concept
vectors and document surrogate vectors, we only
need to consider the stems that are already present in
the concept vectors. This reduction in the dimension
of the document surrogate vectors results in an
increase in the speed at which the fuzzy clusters are
generated.

9. EXPERIMENTAL RESULTS

To evaluate the performance of the proposed
clustering methods for obtaining related queries
using user clickthrough. Firstly describe the
experimental setup for collecting the required
clickthrough data. To collect the clickthrough data to
evaluate our proposed methods, we implemented a
Google middleware to track user clicks. Google was
chosen as a common basis for comparing the
performance of the methods under evaluation. After
that to compare the performance of BB’s algorithm
using query URL, query-word, and query-concept
bipartite graphs (or simply called the QU, QW, and
QC methods). In which to evaluate the effectiveness
of our proposed personalized concept-based
clustering (or simply called the P-QC method). And
then discuss the algorithmic complexities based on
the related parameters.
Now discuss the result of experiments which
compares the performances of QU, QW, QC methods.
QU method is the original input of BB’s algorithm,
which serves as a baseline for comparison. QW
method uses query-word bipartite graph, which is
similar to the query concept bipartite graph in that
they are both constructed. The difference is that the
former contains all words (excluding stop words)
from the web snippets and the latter contains the
extracted concepts. QW and QC methods are
necessary, since they allow us to study the benefits of
concept extraction. The three methods are also
employed to cluster the collected data.

Figure 4: Precision versus recall when performing QU, QW, and
QC

Table 1

Statistics of the Clickthrough Data Collected for the
experiment.

Number of users 5
Number of queries assigned to each
user

10

Number of test queries 50
Number of unique queries 50
Max. number of retrieved URLs for
query

140

Max. no. of extracted concepts for
query

279

Max. no. of extracted words for query 1203
Number of URLs retrieved 15390
Number of unique URLs retrieved 13006
Number of concepts retrieved 14490
Number of unique concepts retrieved 7098
Number of words retrieved 179843
Number of unique words retrieved 24567

The results are compared to our predefined clusters
for precision and recall. Given a query q and its
corresponding query cluster {푞 , 푞 ,푞 … . }generated
by a clustering algorithm, the precision and recall are
computed using the following formulas:

푝푟푒푐푖푠푖표푛(푞) =
|푄 ∩ 푄_푟푒푡푟푖푒푣푒푑|

|푄_푟푒푡푟푖푒푣푒푑|

푟푒푐푎푙푙(푞) =
|푄 ∩푄_푟푒푡푟푖푒푣푒푑|

|푄_푟푒푙푒푣푎푛푡|

International Journal of Scientific & Engineering Research Volume 4, Issue3, March-2013 9
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

The precision and recall values from all queries are
averaged for plotting the precision-recall figures. The
performance of the three methods is compared using
precision-recall figures and best F-measure values.
Figure 4 shows the precision-recall figures for QU,
QW, and QC methods. We observe that QC method
yields better recall rate than QU method (i.e., the
original BB’s algorithm), while preserving high
precision rates. Note that QU method can yield high
precision rate because of the valuable URL overlaps
between queries. However, QC method benefits both
precision and recall compared to QU method,
showing that the use of extracted concepts is much
better for finding similar queries. We also observe
that QW method performs the worst among the three
methods because common nonstop words such as
“discussion,” “information,” and “news” bring
unrelated queries together, thus lowering both the
precision and recall rate. The main difference between
QW and QC methods is the availability of concept
extraction. Intuitively, QC method outperforms QW
method because the concept extraction process can
successfully eliminate unrelated common words
within web-snippets.

Figure 5: Change of recall when performing QU, QW and QC
methods

Figures 5 and 6 show the change of precision and
recall, respectively, for the three clustering methods.
In Figure 5, when the cutoff similarity score is around
0.25, the precision obtained using QU method is very
close to that of QC method, which is much better than
the precision obtained using QW method. In Figure 6,
at the same cutoff similarity score, the recall obtained
using QU method is close to zero, which is much
lower compared to the recalls obtained using QW and
QC methods. We can easily see from Figures 5 and 6

that QC method is able to generate good recall, while
achieving a precision comparable to that of QU
method

 Figure 6: Change of recall when performing QU,

QW and QC methods.
.
Figure 7 shows the precision-recall figures of P-QC
methods. The solid line is the precision-recall graph if
only initial clustering is performed. We can observe
that recall is max out at 0.6. The other three lines
illustrate how community merging can further
improve recall beyond the limit of initial clustering.
We observe that the timing for switching from initial
clustering to community merging is very important to
the precision and recall of the final query clusters.
When initial clustering is stopped too early (see the
dark-triangle and white-triangle graphs in Figure 7),
initial clustering achieves high precision and low
recall, as can be expected, but community merging
fails to improve the recall it drags down precision
without improving recall. The drop of precision is
due to easy merging of identical queries from
different users, thus generating a single big cluster
without personalization benefit.

International Journal of Scientific & Engineering Research Volume 4, Issue3, March-2013 10
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

 Figure 7: Precision versus recall when performing P-QC method.

When initial clustering is switched to community
merging at the optimal point (see the white-circle
graph in Figure 7), community merging clearly boosts
up the precision recall envelop, which means that
both precision and recall achieved in initial clustering
are improved. This indicates that community merging
is successful in choosing query clusters with identical
queries from different users for merging.

 Figure 8: Change of precision when performing P-QC method.

In Figure 8, we observe that the precisions generated
by community merging are slightly lower than those
generated by initial clustering because some
unrelated queries can be wrongly merged in
community merging.

Figure 9: Change of recall when performing P-QC method.

In Figure 9, we observe that the recalls generated by
community merging are much higher than those
generated by initial clustering because community
merging can successfully merge conceptually related
clusters together. We can easily see from Figures 8
and 9 that only a small fraction of precision is used to
trade for a much better recall in community merging.

10. CONCLUSION

As search queries are ambiguous, we have studied
effective methods for search engines to provide query
suggestions on semantically related queries in order
to help users formulate more effective queries to meet
their diversified needs. In this paper, we have
proposed a new personalized concept-based
clustering technique that is able to obtain
personalized query suggestions for individual users
based on their conceptual profiles. First, we develop
online techniques that extract concepts from the web-
snippets of the search result returned from a query
and use the concepts to identify related queries for
that query. A new two phase personalized
agglomerative clustering algorithm and fuzzy
clustering algorithm, which is able to generate
personalized query clusters. The technique makes use
of clickthrough data and the concept relationship
graph mined from web-snippets, both of which can be
captured at the back end and as such do not add extra
burden to users. An adapted agglomerative clustering
algorithm is employed for finding queries that are
conceptually close to one another. Our experimental
results confirm that our approach can successfully
generate personalized query suggestions according to

International Journal of Scientific & Engineering Research Volume 4, Issue3, March-2013 11
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

individual user conceptual needs. it improves
prediction accuracy and computational cost
compared to BB’s algorithm, which is the state-of-the-
art technique of query clustering using clickthroughs
for the similar objective.

REFERENCES
[1] Kenneth Wai-Ting Leung, Wilfred Ng and Dik Lun Lee,

“Personalized Concept Based Clustering of Search
Engine Queries.” Proceeding IEEE Transactions of
Knowledge and Data Engineering, vol. 20, no. 11, Nov.
2008.

[2] Kenneth Wai-Ting Leung, Wilfred Ng and Dik Lun Lee,
“Deriving Concept Based Users Profiles from Search
Engine Logs.” Proceeding IEEE Transactions of
Knowledge and Data Engineering, vol. 6, no. 1, Jan 2007.

[3] Eugene Agichtein, Eric Brill and Susan Dumais,

“Improving Web Search Ranking by Incorporating User
Behavior Information.” Proceedings of the ACM
conference on Research and Development on
Information Retrieval (SIGIR) 2006.

[4] Kenneth Wai-Ting Leung, Wilfred Ng and Dik Lun Lee,
“Constructing Concept Billion Network and its
Application to Personalized Web Search.” Proceedings
of EDBT 2011, March 22-24, 2011, Uppsala, Sweden

[5] Doug Beeferman and Adam Berger, “Agglomerative

Clustering of a Search Engine Query Log.” Proceedings
of the ACM conference on Management of Data 2000,
Washington.

[6] R. Agrawal, T. Imielinski, and A. Swami, “Mining

Association Rules between Sets of Items in Large
Databases,” Proc. ACM SIGMOD, 1993.

[7] S.M. Beitzel, E.C. Jensen, A. Chowdhury, D. Grossman,

and O. Frieder, “Hourly Analysis of a Very Large
Topically Categorized Web Query Log,” Proc. 27th Ann.
Int’l ACM SIGIR Conf. (SIGIR), 2004.

[8] H. Cui, J. Wen, J. Nie, and W. Ma, “Query Expansion by

Mining User Logs,” IEEE Trans. Knowledge and Data
Eng., vol. 15, no. 4, pp. 829-839, July/Aug. 2003.

[9] S. Chuang and L. Chien, “Automatic Query Taxonomy
Generation for Information Retrieval Applications,”
Online Information Rev., vol. 27, no. 4, pp. 243-255, 2003.

[10] H. Cui, J. Wen, J. Nie, and W. Ma, “Query Expansion by

Mining User Logs,” IEEE Trans. Knowledge and Data
Eng., vol. 15, no. 4, pp. 829-839, July/Aug. 2003.

[11] K.W. Church, W. Gale, P. Hanks, and D. Hindle,
“Using Statistics in Lexical Analysis,” Lexical
Acquisition: Exploiting On-Line Resources to
Build a Lexicon, U. Zernik, ed., Lawrence
Erlbaum, 1991.

[12] L. Deng, W. Ng, X. Chai, and D.L. Lee, “Spying
Out Accurate User Preferences for Search Engine
Adaptation,” Advances in Web Mining and Web
Usage Analysis, LNCS 3932, pp. 87-103, 2006.

[13] S. Chuang and L. Chien, “Automatic Query
Taxonomy Generation for Information Retrieval
Applications,” Online Information Rev., vol. 27,
no. 4, pp. 243-255, 2003.

[14] L. Deng, W. Ng, X. Chai, and D.L. Lee, “Spying

Out Accurate User Preferences for Search Engine
Adaptation,” Advances in Web Mining and Web
Usage Analysis, LNCS 3932, pp. 87-103, 2006.

[15] T. Joachims and F. Radlinski, “Search Engines

That Learn from Implicit Feedback,” Computer,
vol. 40, no. 8, pp. 34-40, 2007.

[16] B. Koester, “Conceptual Knowledge Retrieval with
FooCA: Improving Web Search Engine Results
with Contexts and Concept Hierarchies,” Proc.
Sixth IEEE Int’l Conf. Data Mining (ICDM), 2006.

[17] F. Liu, C. Yu, and W. Meng, “Personalized Web

Search for Improving Retrieval Effectiveness,”
IEEE Trans. Knowledge and Data Eng., vol. 16, no.
1, pp. 28-40, Jan. 2004.

