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Deriving Personalized Concept and Fuzzy 
Based User Profile from Search Engine 

Queries
Abstract — Personalized search is an important research area that aims to resolve the ambiguity of query terms. Since queries 
submitted to search engines tend to be short and ambiguous, they are not likely to be able to express the user’s precise needs. To 
alleviate this problem, some search engines suggest terms that are semantically related to the submitted queries so that users can 
choose from the suggestions the ones that reflect their information needs. First, we develop online techniques that extract concepts 
from the web-snippets of the search result returned from a query and use the concepts to identify related queries for that query. A 
new two phase personalized agglomerative clustering algorithm and fuzzy clustering algorithm, which is able to generate 
personalized query clusters. Experimental results show that our approach has better precision and recall than the existing query 
clustering methods. So we can find an effective method for search engines to provide query suggestions on semantically related 
queries in order to help users formulate more effective queries to meet their diversified needs. All above analysis is done on the 
basis of mathematical calculations. 

Index Terms — Query log analysis, Clustering URL, Clustering queries, Clickthrough, Concept based clustering,                  
Personalization, Fuzzy clustering, Search engine. 

——————————      —————————— 

1. Introduction                                                                     
Most commercial search engines return roughly 
the same results for the same query, regardless 
of the user’s real interest. Since queries 
submitted to search engines tend to be short and 
ambiguous, they are not likely to be able to 
express the user’s precise needs. For example, a 
farmer may use the query “apple” to find 
information about growing delicious apples, 
while graphic designers may use the same query 
to find information about Apple Computer. 
Personalized search is an important research 
area that aims to resolve the ambiguity of query 
terms. To increase the relevance of search 
results, personalized search engines create user 
profiles to capture the users’ personal 
preferences and as such identify the actual goal 
of the input query. Since users are usually 
reluctant to explicitly provide their preferences 
due to the extra manual effort involved, recent 
research has focused on the automatic learning 

of user preferences from users’ search histories 
or browsed documents and the development of 
personalized systems based on the learned user 
preferences. A good user profiling strategy is an 
essential and fundamental component in search 
engine personalization 
To improve user’s search experience, most major 
commercial search engines provide query 
suggestions to help users formulate more 
effective queries. When a user submits a query, 
a list of terms that are semantically related to the 
submitted query is provided to help the user 
identify terms that he/she really wants, hence 
improving the retrieval effectiveness. Yahoo’s 
“Also Try” and Google’s “Searches related to” 
features provide related queries for narrowing 
search, while Ask Jeeves suggests both more 
specific and more general queries to the user. 
Unfortunately, these systems provide the same 
suggestions to the same query without 
considering users’ specific interests. 
It propose a method that provides personalized 
query suggestions based on a personalized 
concept-based clustering technique. In contrast 
to existing methods that provide the same 
suggestions to all users, our approach uses click 
through data to estimate user’s conceptual 
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preferences and then provides personalized 
query suggestions for each individual user 
according to his/her conceptual needs. The 
motivation of our research is that queries 
submitted to a search engine may have multiple 
meanings. For example, depending on the user, 
the query “apple” may refer to a fruit, the 
company Apple Computer or the name of a 
person, and so forth. Thus, providing 
personalized query suggestion (e.g., users 
interested in “apple” as a fruit get suggestions 
about fruit, while users interested in “apple” as 
a company get suggestions about the company’s 
products) certainly helps users formulate more 
effective queries according to their needs. The 
underlying idea of our proposed technique is 
based on concepts and their relations extracted 
from the submitted user queries, the web-
snippets,1 and the click through data. Click 
through data was exploited in the personalized 
clustering process to identify user preferences: A 
user clicks on a search result mainly because the 
web snippet contains a relevant topic that the 
user is interested in. Moreover, clickthrough 
data can be collected easily without imposing 
extra burden on users, thus providing alow-cost 
means to capture user’s interest. 
 

 Figure 1: The general process of concept-based 
clustering. 
 
It approach consists of the following four major steps. 
First, when a user submits a query, concepts (i.e., 
important terms or phrases in web-snippets) and their 
relations are mined online from web-snippets to build 
a concept relationship graph. Second, clickthroughs 
are collected to predict user’s conceptual preferences. 

Third, the concept relationship graph together with 
the user’s conceptual preferences is used as input to a 
concept-based clustering algorithm that finds 
conceptually close queries. Finally, the most similar 
queries are suggested to the user for search 
refinement. Figure 1 shows the general process of our 
approach. To evaluate the performance of our 
approach, we developed a Google middleware for 
clickthrough data collection.2 Users were invited to 
test our middleware with test queries selected from a 
spectrum of topical categories. We evaluate the 
performance of our approach using the standard 
recall-precision measures. Beeferman and Berger’s 
agglomerative clustering algorithm (or simply called 
BB’s algorithm in this paper) is used as the baseline to 
compare with our concept-based approach. Our 
experimental results show that the average precision 
at any recall level is better than the baseline method. 
 
2. RELATED WORK 

Query clustering techniques have been developed in 
diversified ways. The very first query clustering 
technique comes from information retrieval studies. 
Similarity between queries was measured based on 
overlapping keywords or phrases in the queries. Each 
query is represented as a keyword vector. Similarity 
functions such as cosine similarity or Jaccard 
similarity were used to measure the distance between 
two queries. One major limitation of the approach is 
that common keywords also exist in unrelated 
queries. For example, the queries, “apple iPod” (an 
MP3 player) and “apple pie” (a dessert), are very 
similar since they both contain the keyword “apple.” 
However, the queries are actually expressing two 
different search needs. 
Dik Lun Lee [2] proposed to user profiling is a 
fundamental component of any personalization 
applications. Most existing user profiling strategies 
are based on objects that users are interested in (i.e. 
positive preferences), but not the objects that users 
dislike (i.e. negative preferences). It focuses on search 
engine personalization and develops several concept-
based user profiling methods that are based on both 
positive and negative preferences. We evaluate the 
proposed methods against our previously proposed 
personalized query clustering method. 
Eric Brill and Susan Dumais [3] have proposed that 
incorporating user behavior data can significantly 
improve ordering of top results in real web search 
setting. We examine alternatives for incorporating 
feedback into the ranking process and explore the 
contributions of user feedback compared to other 
common web search features. A large scale evaluation 
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over 3,000 queries and 12 million user interactions 
with a popular web search engine. We show that 
incorporating implicit feedback can augment other 
features, improving the accuracy of a competitive web 
search ranking algorithms by as much as 31% relative 
to the original performance. 
 
Doug Beeferman and Adam Berger [5] has 
proposed a technique for mining a collection of 
user transactions with an Internet search engine 
to discover clusters of similar queries an similar 
URLs. The information we exploit is 
“Clickthrough data”: each record consists of a 
user’s query to a search engine along with the 
URL which the user selected from among the 
candidates offered by the search engine. By 
viewing this dataset as a bipartite graph, with 
the vertices on one side corresponding to 
queries and the other side to URLs, one can 
apply an agglomerative clustering algorithm to 
the graph’s vertices to identify related queries 
and URLs. One noteworthy feature of the 
proposed algorithm is that it is “content-
ignorant” the algorithm makes no use of the 
actual content of the queries or URLs, but only 
how they co-occur within the clickthrough data. 
It describes how to enlist the discovered clusters 
to assist users in web search, and measure the 
effectiveness of the discovered clusters in the 
Lycos search engine. 
We know that most of the previous approaches 
on query clustering consider two different 
queries to be semantically similar if they lead to 
common clicks on the same pages. However, the 
chances for different queries leading to common 
clicks on the same URLs are rare in Web search 
engines. Based on this important observation, 
we propose to use concepts, not pages, as the 
common ground for relating semantically 
similar queries. That is, two queries are 
considered related if they lead to clicks on pages 
that share some common concepts, which are 
mined from the web-snippets in the search 
results.   
To our knowledge, there is no previous study on 
the personalization of query suggestions. We 
propose a two-phase clustering method to 
cluster queries first within the scope of each user 

and then for the community. We conduct 
experiments to evaluate different methods and 
show that our concept-based two-phase 
clustering method yields the best precision and 
recall. 
 

3. QUERY LOG ANALYSIS 
Because of the proprietary nature of the 
information, the scientific literature contains 
very little analysis of data collected from large-
scale commercial search engines. An exception is 
Silverstein et. al, who reported statistics 
accumulated from a billion entry set of user 
queries to Altavista. 
One of the central aims of the present work was 
to develop a rapid turnaround clustering 
module capable of identifying and adapting too 
late-breaking or ephemeral trends in web usage. 
It involved a query log accumulated over six 
weeks; we are more interested in discovering 
information from a single day’s records. After 
having processed the day’s queries, a clustered 
could provide “fresh” clusters for deployment in 
the search engine the following day. This is 
critical for rapid response to news events. Where 
sprint and MCI/WorldCom are two unrelated 
telecommunication companies one day, they 
might announce a merger the very next day. As 
soon as possible after the announced merger, a 
search engine with a rapid –turnaround 
clustering module could, in response to the 
query Sprint, propose www.mci.com as a 
possibly relevant URL, and suggest 
MCI/WorldCom as a related query.   
   

4. CLUSTERING URLS 
A high quantity URL clustering algorithm could 
help in automating the process of ontology 
generation (the task which Yahoo and Open 
Directory human employees perform), 
organizing bookmark files into categories, 
constructing a user specific profile of “pages this 
person finds interesting” and grouping the 
results of a web search by category. Not 
surprisingly the past years have witnessed a 
great deal of interest in this area. 
Researchers have been investigating the more 
general problem of document clustering 
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algorithms for decades, and it makes sense to 
consider how well these approaches-which do 
not exploit the correlations between documents 
and queries inherent in a search engine 
transaction database, would fare on a subset of 
the internet. One popular technique is k-means, 
whose running time is linear in the member of 
documents lie in a spherical configuration with 
respect to underlying metric. Also popular are 
hierarchical agglomerative clustering (HAC) 
techniques, typically at least quadratic in n, 
which repeatedly find the closest two 
documents and merge them. 
Our approach falls into the HAC category, but 
differs from traditional techniques in one 
significant way. Namely, the distance between 
two documents can be evaluated without 
examining the content of those documents, a 
property we shall refer to as “content 
ignorance.” This stands in contrast to traditional 
“content-aware” clustering algorithms, which 
typically use as a distance between documents 
some function of the fraction of tokens they have 
in common. 
Clustering web pages by content may require 
storing and manipulating a staggeringly large 
amount of data: by early 2000, there were atleast 
a billion pages on the Internet accessible by 
commercial search engines. Content ignorance 
can obviously be a valuable property when 
handling a dataset of this scale. It can also be 
applicable, at least in principle, in setting where 
content-aware clustering is not, including: 
 

 Text-free pages: A distance function calculated 
from the text of a web page isn’t capable of 
recognizing the correspondence between a web 
page containing just a picture of an emu and 
another describing the appearance and behavior of 
an emu. 

 Pages with restricted-access: URLs may be 
password protected or temporarily unavailable, 
rendering them unavailable to a clustering 
procedure which relies on the content of the page. 

 Pages with dynamic content: A URL might always 
point to a company’s web page, but the contents of 
that page are likely to change regularly, updated 
with news about the company. A content-aware 

clustered is more susceptible to placing a URL in 
different clusters as the page is modified. 

 
The last and perhaps most important advantage is that 
content-ignorant clustering can be implemented 
relatively more efficiently than standard 
agglomerative techniques.   
 

5. CLUSTERING QUERIES 
Clustering queries submitted to search engine 
appears to be a rather less explored problem 
than clustering web pages, through there are 
practical, commercial applications for a high 
quality query clustered. For instance, if a user 
submits to a search engine a query q which is a 
member of a cluster C, the search engine could 
suggest as alternate, related queries the other 
member of C. Such a “related query” tool is 
deployed in the Lycos search engine; the 
component appears in Figure 1.  
 
 

 
 

Figure 2: Lycos Search Engine. 
 

Many commercial search engines offer users the 
opportunity to rephrase their information need 
by suggesting alternate queries. Shown is the 
top of a page generated by Lycos is response to 
the query American Airlines. A query clustering 
algorithm could provide such a list of 
suggestions by offering, in response to a query 
q, the other members of the cluster containing q. 
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6. CLICKTHROUGH DATA 
The http protocol allows commercial search 
engines the ability to record a great deal of 
information about their users the name and IP 
address of the machine which sent the request, 
the type of web browser running on the 
machine, and so on. Here we are interested only 
in the sequence of character comprising the 
query submitted by the user from among the 
choices presented by the search engine. It 
applied a simple filter to detect and remove 
those records containing objectionable content 
such as pornography and hate speech. This 
eliminated about 20% of the records gathered, 
including an undetermined number of false 
positives and negatives. It mapped the query 
characters to lowercase and converted a 
sequence of one or more spaces to positive, but 
otherwise performed no processing of the 
queries submitted to Lycos. 
It avoids significant processing of the search 
engine log file to underscore the “pushbutton” 
nature of the proposed clustering based 
algorithms. Clearly, however, even a minimal 
amount of preprocessing could go a long way in 
helping the clustering. 
 

7. CONCEPT BASED CLUSTERING 

Using the concepts extracted from web-snippets, 
we propose concept-based clustering methods.  
 
We first extend BB’s algorithm to a concept-
based algorithm. After that personalized 
concept-based algorithm is further enhanced to 
achieve effective personalized clustering. 
 
A. Clustering on Query-Concept Bipartite 
Graph 
In BB’s graph-based clustering, a query-page 
bipartite graph is first constructed with one set 
of the nodes corresponding to the set of 
submitted queries, and the other corresponding 
to the sets of clicked pages. If a user clicks on a 
page, a link between the query and the page is 
created on the bipartite graph. After obtaining 
the bipartite graph, an agglomerative clustering 

algorithm is used to discover similar queries and 
similar pages. During the clustering process, the 
algorithm iteratively combines the two most 
similar queries into one query node, then the 
two most similar pages into one page node, and 
the process of alternative combination of queries 
and pages is repeated until a termination 
condition is satisfied. The main reason for not 
clustering all the  queries first and then all the 
pages next are that two queries may seem 
unrelated prior to page clustering because they 
link to two different pages but they may become 
similar to each other if the two pages have a 
high enough similarity to each other and are 
merged later. 
 
B. Personalized Concept-Based Clustering 
We now explain the essential idea of our 
personalized concept-based clustering algorithm 
with which ambiguous queries can be clustered 
into different query clusters. Personalized effect 
is achieved by manipulating the user concept 
preference profiles in the clustering process. In 
contrast to BB’s agglomerative clustering 
algorithm, which represents the same queries 
submitted from different users by one query 
node, we need to consider the same queries 
submitted by different users separately to 
achieve personalization effect. In other words, if 
two given queries, whether they are identical or 
not, mean different things to two different users, 
they should not be merged together because 
they refer to two different sets of concepts for 
the two users. 
Therefore, we treat each individual query 
submitted by each user as an individual vertex 
in the bipartite graph by labeling each query 
with a user identifier. Moreover, concepts 
appearing in the web-snippet of the search 
result with interestingness weights greater than 
zero in the concept preference profile are linked 
to the corresponding query on the bipartite 
graph. An example is shown in Figure 3a. We 
can see that the query “apple” submitted by 
users User1 and User3 become two vertices 
“apple( )” and "apple( ) . "	 If User1 is 
interested in the concept “apple store,” as 
recorded in the concept preference profile, a link 
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between the concept “apple store” and the 
query “apple( )” would be created. On the 
other hand, if User3 is interested in the concept 
“fruit,” a link between the concept “fruit” and 
“apple( )” would be created. 
 

 
 

Figure 3a: Original Bipartite Graph. 
 

After the personalized bipartite graph is created, 
our initial experiments revealed that if we apply 
BB’s algorithm directly on the bipartite graph, 
the query clusters generated will quickly merge 
queries from different users together, thus 
losing the personalization effect We found that 
identical queries, though issued by different 
users and having different meanings, tend to 
have some generic concept nodes such as 
“information” in common, e.g., “apple( )” 
and “apple( )” both connect to the 
“information” concept node in Figure 3a. Thus, 
these query nodes will likely be merged in the 
first few iterations and cause more queries from 
different users to be merged together in 
subsequent iterations. Considering Figure 3a 
again, if “apple( )” and “apple( )” are 
merged, the next iteration will merge the 
concept nodes “apple store,” “fruit,” and 
“information.” When the clustering algorithm 
goes further, queries across users will be further 
clustered together. At the end, the resulting 
query clusters have no personalization effect at 
all. To resolve the problem, we divide clustering 
into two steps. In the initial clustering step, an 
algorithm similar to BB’s algorithm is employed 
to cluster all the queries, but it would not merge 
identical queries from different users 
. 

 
 

Figure 3b: Initial Clustering. 
 
After obtaining all the clusters from the initial 
clustering step, the community merging step is 
employed to merge query clusters containing 
identical queries from different users. We can see 
from Figure 3d that “apple( )” and “apple( )” 
belong, correctly, to different clusters. The initial 
clustering step is able to generate high precision rate 
because it preserves the preference of each user, while 
the community merging step is able to improve the 
recall rate because of the collaborative filtering effect. 

 
Figure 3c: Community merging 

 
 

Initial clustering is similar to BB’s agglomerative 
algorithm as already discuss. However, queries from 
different users are not allowed to be merged in initial 
clustering Figures 3b and 3c show examples of query 
and concept merging, respectively. Figure 5d 
illustrates the result of initial clustering. In 
community merging, query clusters containing 
identical queries from different users are compared 
for merging. Figures 3d and 3e show an example of 
query cluster merging.  
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The query clusters both contain the query “apple” 
and are leading to the same concept “apple store.” 
Therefore, they are merged in community merging as 
one big cluster. Good timing to start community 
merging is important for the success of the algorithm. 
If we stop initial clustering too early (i.e., not all 
clusters are well formed), community merging 
merges all the identical queries from different users 
first and thus generates a single big cluster without 
much personalization effect. However, if we stop 
initial clustering too late (i.e., clusters are being overly 
merged in this case), the low precision rate generated 
by initial clustering would not be improved by 
community merging. 
 

8. FUZZY CLUSTERING USING CONCEPTS 
The first step in generating the concept-based fuzzy 
clusters is to obtain a set of concepts associated with 
the users queries. The source of the conceptual 
information is a concept knowledge base that was 
originally devised for query expansion. This concept 
knowledge base contains relationships between 
concepts and the terms have been used to describe 
them. The ACM Computing Classification System 
was used as the source of the conceptual knowledge 
for the prototype tool, resulting in a concept 
knowledge base specifically for the computer science 
domain. The process for obtaining the concepts that 
are related to the users queries is similar to the 
process for generating the query space as described. 
The query terms are first processed using Porter’s 
stemming algorithm, which removes the prefixes and 
suffixes from terms to generate the root words, called 
stems. These stems are matched to the stems in the 
concept knowledge base, and the nearest concepts are 
selected. For each of these concepts, the set of stems 
that are nearest to the concept are selected from the 
knowledge base. Each of these sets will contain one or 
more of the original query term stems, plus additional 
stems that are not present in the query. The first step 
in generating the concept-based fuzzy clusters is to 
obtain a set of concepts associated with the users’ 
queries. The source of the conceptual information is a 
concept knowledge base that was originally devised 
for query. This concept knowledge base contains 
relationships between concepts and the terms have 
been used to describe them. The ACM Computing 
Classification System was used as the source of the 
conceptual knowledge for the prototype tool, 
resulting in a concept knowledge base specifically for 
the computer science domain. The process for 

obtaining the concepts that are related to the users 
queries is similar to the process for generating the 
query space as described. The query terms are first 
processed using Porter’s stemming algorithm, which 
removes the prefixes and suffixes from terms to 
generate the root words, called stems. These stems are 
matched to the stems in the concept knowledge base, 
and the nearest concepts are selected. For each of 
these concepts, the set of stems that are nearest to the 
concept are selected from the knowledge base. Each 
of these sets will contain one or more of the original 
query term stems, plus additional stems that are not 
present in the query. Therefore, as a result of this 
query space generation, a set of concept vectors C = 
{푐 ,푐 , … , 푐 } are generated. If the total number of 
unique stems that were selected from the concept 
knowledge base is p, then the dimension of all vectors 
푐  (i = 1 . . .m) is p. Further, the magnitude of the 
vector 푐  (i = 1 . . .m) on dimension j (j = 1 . . . p) is 
given by the concept knowledge base weight between 
concept i and term j. 
After the concepts have been obtained from the 
concept knowledge base, and the concept vectors 
have been created, the users’ queries are sent to the 
Google API. As each of the document surrogates are 
retrieved, a single-pass fuzzy c-means clustering 
algorithm is performed. The title and snippet from the 
document surrogate are processed using Porter’s 
stemming algorithm, and the frequency of each 
unique stem is calculated. These frequencies are used 
to generate vectors for each of the document 
surrogates. Although some argue against using term 
frequencies (TF) as the sole source of information in a 
text retrieval system, using other global information 
such as the inverse document frequency (IDF) is not 
feasible when the document surrogate vectors need to 
be generated as each document surrogate is retrieved 
(to achieve a near real-time web information retrieval 
system). Given a set of concept vectors C = 
{푐 ,푐 , … , 푐 } and a document surrogate vector푑 , the 
fuzzy membership of document surrogate 푑  with 
respect to concept 푐  is given by: 
 

푢 , =
1

∑ 푠푖푚(푑 , 푐 )
푠푖푚(푑 , 푐 )

 

 
In this calculation, the similarity between a document 
surrogate vector and a concept vector is given by the 
Euclidean distance metric. 
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푠푖푚 푥 , 푥 = ( (푥 , − 푥 , ) ) ⁄  

       ((1) 
Normally, when evaluating the document surrogates, 
all unique stems would contribute to the construction 
of the document surrogate vector. However, since the 
distance calculations in this single-pass fuzzy 
clustering algorithm are always between concept 
vectors and document surrogate vectors, we only 
need to consider the stems that are already present in 
the concept vectors. This reduction in the dimension 
of the document surrogate vectors results in an 
increase in the speed at which the fuzzy clusters are 
generated. 
  
9. EXPERIMENTAL RESULTS 

 
To evaluate the performance of the proposed 
clustering methods for obtaining related queries 
using user clickthrough. Firstly describe the 
experimental setup for collecting the required 
clickthrough data. To collect the clickthrough data to 
evaluate our proposed methods, we implemented a 
Google middleware to track user clicks. Google was 
chosen as a common basis for comparing the 
performance of the methods under evaluation. After 
that to compare the performance of BB’s algorithm 
using query URL, query-word, and query-concept 
bipartite graphs (or simply called the QU, QW, and 
QC methods). In which to evaluate the effectiveness 
of our proposed personalized concept-based 
clustering (or simply called the P-QC method). And 
then discuss the algorithmic complexities based on 
the related parameters. 
Now discuss the result of experiments which 
compares the performances of QU, QW, QC methods. 
QU method is the original input of BB’s algorithm, 
which serves as a baseline for comparison. QW 
method uses query-word bipartite graph, which is 
similar to the query concept bipartite graph in that 
they are both constructed. The difference is that the 
former contains all words (excluding stop words) 
from the web snippets and the latter contains the 
extracted concepts. QW and QC methods are 
necessary, since they allow us to study the benefits of 
concept extraction. The three methods are also 
employed to cluster the collected data.  
 
         

 
 
Figure 4: Precision versus recall when performing QU, QW, and   
QC 

 
Table 1 

Statistics of the Clickthrough Data Collected for the 
experiment. 

 
Number of users 5 
Number of queries assigned to each 
user 

10 

Number of test queries 50 
Number of unique queries 50 
Max. number of retrieved URLs for 
query 

140 

Max. no. of extracted concepts for 
query 

279 

Max. no. of extracted words for query 1203 
Number of URLs retrieved 15390 
Number of unique URLs retrieved 13006 
Number of concepts retrieved 14490 
Number of unique concepts retrieved 7098 
Number of words retrieved 179843 
Number of unique words retrieved 24567 

 
 
The results are compared to our predefined clusters 
for precision and recall. Given a query q and its 
corresponding query cluster {푞 , 푞 ,푞 … . }generated 
by a clustering algorithm, the precision and recall are 
computed using the following formulas: 
 
 
 

푝푟푒푐푖푠푖표푛(푞) =
|푄 ∩ 푄_푟푒푡푟푖푒푣푒푑|

|푄_푟푒푡푟푖푒푣푒푑|  

 
 
 

푟푒푐푎푙푙(푞) =
|푄 ∩푄_푟푒푡푟푖푒푣푒푑|

|푄_푟푒푙푒푣푎푛푡|  

 



International Journal of Scientific & Engineering Research Volume 4, Issue3, March-2013                                              9 
ISSN 2229-5518 
 

IJSER © 2013 
http://www.ijser.org 

   
 

The precision and recall values from all queries are 
averaged for plotting the precision-recall figures. The 
performance of the three methods is compared using 
precision-recall figures and best F-measure values. 
Figure 4 shows the precision-recall figures for QU, 
QW, and QC methods. We observe that QC method 
yields better recall rate than QU method (i.e., the 
original BB’s algorithm), while preserving high 
precision rates. Note that QU method can yield high 
precision rate because of the valuable URL overlaps 
between queries. However, QC method benefits both 
precision and recall compared to QU method, 
showing that the use of extracted concepts is much 
better for finding similar queries. We also observe 
that QW method performs the worst among the three 
methods because common nonstop words such as 
“discussion,” “information,” and “news” bring 
unrelated queries together, thus lowering both the 
precision and recall rate. The main difference between 
QW and QC methods is the availability of concept 
extraction. Intuitively, QC method outperforms QW 
method because the concept extraction process can 
successfully eliminate unrelated common words 
within web-snippets. 
 

 
 

Figure 5: Change of recall when performing QU, QW and QC 
methods 

Figures 5 and 6 show the change of precision and 
recall, respectively, for the three clustering methods. 
In Figure 5, when the cutoff similarity score is around 
0.25, the precision obtained using QU method is very 
close to that of QC method, which is much better than 
the precision obtained using QW method. In Figure 6, 
at the same cutoff similarity score, the recall obtained 
using QU method is close to zero, which is much 
lower compared to the recalls obtained using QW and 
QC methods. We can easily see from Figures 5 and 6 

that QC method is able to generate good recall, while 
achieving a precision comparable to that of QU 
method 
 
 

 
 

 
       Figure 6: Change of recall when performing QU, 

QW and QC methods. 
. 
Figure 7 shows the precision-recall figures of P-QC 
methods. The solid line is the precision-recall graph if 
only initial clustering is performed. We can observe 
that recall is max out at 0.6. The other three lines 
illustrate how community merging can further 
improve recall beyond the limit of initial clustering. 
We observe that the timing for switching from initial 
clustering to community merging is very important to 
the precision and recall of the final query clusters. 
When initial clustering is stopped too early (see the 
dark-triangle and white-triangle graphs in Figure 7), 
initial clustering achieves high precision and low 
recall, as can be expected, but community merging 
fails to improve the recall it drags down precision 
without improving recall. The drop of precision is 
due to easy merging of identical queries from 
different users, thus generating a single big cluster 
without personalization benefit. 
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 Figure 7: Precision versus recall when performing P-QC method. 
 
When initial clustering is switched to community 
merging at the optimal point (see the white-circle 
graph in Figure 7), community merging clearly boosts 
up the precision recall envelop, which means that 
both precision and recall achieved in initial clustering 
are improved. This indicates that community merging 
is successful in choosing query clusters with identical 
queries from different users for merging. 
 

 
 

     Figure 8: Change of precision when performing P-QC method. 
 
In Figure 8, we observe that the precisions generated 
by community merging are slightly lower than those 
generated by initial clustering because some 
unrelated queries can be wrongly merged in 
community merging.  

 
 

Figure 9: Change of recall when performing P-QC method. 
 
In Figure 9, we observe that the recalls generated by 
community merging are much higher than those 
generated by initial clustering because community 
merging can successfully merge conceptually related 
clusters together. We can easily see from Figures 8 
and 9 that only a small fraction of precision is used to 
trade for a much better recall in community merging. 
 
10. CONCLUSION 

As search queries are ambiguous, we have studied 
effective methods for search engines to provide query 
suggestions on semantically related queries in order 
to help users formulate more effective queries to meet 
their diversified needs. In this paper, we have 
proposed a new personalized concept-based 
clustering technique that is able to obtain 
personalized query suggestions for individual users 
based on their conceptual profiles. First, we develop 
online techniques that extract concepts from the web-
snippets of the search result returned from a query 
and use the concepts to identify related queries for 
that query. A new two phase personalized 
agglomerative clustering algorithm and fuzzy 
clustering algorithm, which is able to generate 
personalized query clusters. The technique makes use 
of clickthrough data and the concept relationship 
graph mined from web-snippets, both of which can be 
captured at the back end and as such do not add extra 
burden to users. An adapted agglomerative clustering 
algorithm is employed for finding queries that are 
conceptually close to one another. Our experimental 
results confirm that our approach can successfully 
generate personalized query suggestions according to 
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individual user conceptual needs. it improves 
prediction accuracy and computational cost 
compared to BB’s algorithm, which is the state-of-the-
art technique of query clustering using clickthroughs 
for the similar objective. 
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